网上有关“如何加强数学思想方法的渗透”话题很是火热,小编也是针对如何加强数学思想方法的渗透寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
数学思想是指:现实世界的空间形式和数量关系反映到人们的意识中,经过思维活动而产生的结果,它是对数学事实与理论,经过精确地概括后产生的本质认识。数学具有很强的抽象性,数学思想是数学的精髓,可以锻炼学生的逻辑思维能力,培养学生的创新能力。随着我国教育事业的发展,数学教学任务发生了很大的变化,传统单纯的传授基础知识和基本技能的教学任务,已经被提高学生的综合能力,促进学生的全面发展所代替。因此,在数学教学中渗透数学思想方法,发掘学生的潜能,培养学生的思维品质和创新能力,成为数学教学的重要任务之一。
一、数学教学中需渗透的数学思想方法
1.假设思想方法。假设是利用题目中的已知条件,假设出题目中隐含的信息,然后根据已知条件推算、数量矛盾,得出正确答案的一种思想方法。例如,典型的鸡兔同笼问题就可以用假设的思想方法解决。
2.数形结合思想方法。数学研究的两个主要对象是数字和图形,由于“数无形,少直观,形无数,难入微”,所以可以利用数形结合的思想方法,化繁为简,化难为易。一方面,图形可以让抽象的数学概念更加形象、直观、简单;另一方面,借助数量关系表示图形,可以以简化繁。
3.符号化思想方法。所谓符号思想就是利用符号化的语言,像图形、数字、字母以及特定的符号等,来代表数学内容,利用量之间的关系进行演绎和推算,可以简化思考过程,加快学生的思考速度,例如,小学数学中的6+( )=10。
4.比较思想方法。这种方法在数学教学中被经常用到,它通过比较两者之间的异同,培养学生的分辨能力,提高学生的思维能力。例如,小学数学中,比较数字的大小、图形的大小等。
5.转化思想方法。把陌生的、复杂的、未知的通过归纳演绎转化为熟悉的、简单的、已知的问题,可以有效的解决新问题。例如,几何图形中的等体积变化问题。
6.类比思想方法,通过比较两类或两个不同的数学对象,利用两者之间的类似或相同之处,推断出两者在其他方面可能出现的类似或相同之处。
如何在教学中渗透数学思想
如何在小学低年级计算教学中渗透数学思想和数学方法
《数学课程标准》中曾明确指出:“数学思想方法是对数学规律的理性认识。学卞通过数学学习、形成一定的数学思想方法是数学课程的一个重要目的,应在教学中加以渗透。”掌握科学的数学思想方法对提升学生的思维品质.对数学学科的后续学习,对其他学科的学习,乃至学生的终身发展都具有十分重要的意义。数学思想方法的形成是一个循序渐进的过程,所以需要我们教师长期训练,及早培养,特别要在低年级的教学中相机渗透,
一、函数思想方法在低年级教学中的渗透
恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处就在于它用运动、变化的观点去反映客观事物数量间的相互联系和内在规律。比如一年级下册第10页中的第3题,我们就可以适时向学生相机渗透“变与不变”的思想。
例谈数学思想方法在低年级教学中的渗透
虽然教材中没有提及函数这个概念,一年级的学生也不能理解这个概念,教师也不需要告诉学生什么是函数,但教师要在教学中将函数思想渗透在其中:在学生得出结果后,教师要及时引导学生观察:你有什么发现?让学生发现减号前面的数11不变,当减号后面的数发生变化时,最后的结果也会发生变化。也就是讣学生隐约发现运算的结果是随着减数的变化而变化的。
二、数形结合思想在低年级教学中的渗透
数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所表示的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
如,教学《两位数乘一位数的乘法》(国标苏教版第4册69页)一课,
例谈数学思想方法在低年级教学中的渗透
依据主题图学生不仅能独:仅口算,而且算法多样,
(1)20x3=20+20+20=60
(2)2个十乘3得6个十,就是60
(3)因为2x3=6,所以20x3=60
例谈数学思想方法在低年级教学中的渗透
在教学14x2的笔算时,根据上面的主题图学生也能独立探究算法:先算2个十是20,再箅2个4得8,最后把它们合并起来——共是28。然而,如何帮助学生把算理与算法结合起来,将算理内化成算法,把思考的步骤与过程用竖式的形式呈现?用竖式计算14x2的结果是——个抽象过程,离开直观的图形支撑,直接要求学生独立建立竖式模型,对于低年级学生来说是行一定难度的。所以此时教师仍然町以借助亢观图形帮助学生经过从有观到抽象的过程, 如,根据计算的先后顺序分步展示课什:2x4计算的是图中的哪个部分?1x2呢?(点击箭头图),这样把图式结合起来,通过竖式与图形的对应关系,帮助学生发现算理与算法之间的关系,让学生在明确算理的基础上掌握算法。
小学数学十大数学思想方法
如何在教学中渗透数学思想
数学思想方法是解决数学问题所采用的方法。它是数学概念的建立、数学规律的归纳、数学知识的掌握和数学问题解决的基础。在人的数学研究中,最有用的不仅仅是数学知识,更重要的是数学思想方法。小学数学中常用的数学思想方法有数形结合思想方法、对应思想方法、符号化思想方法、化归思想方法等。下面我就如何向学生渗透这些数学思想方法分别举例说明。
1数形结合的数学思想方法。
数和形是数学研究的两个主要对象,两者既有区别,又有联系,互相促进。所谓数形结合的思想方法就是通过具体事实的形象思维过渡到抽象思维的方法。数形的结合是双向的,一方面,抽象的数学概念、复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面,复杂的形体可以用简单的数量关系表示。用图解法分析问题就是运用这种方法。我从二年级开始就教学生画线段图分析应用题的数量关系。例如《现代小学数学》第三册的例题:“南庄小学秋季种树53棵,比春季多种8棵。春季种树多少棵?”先让学生找到关健句,弄清谁与谁比,谁多谁少,画出线段图:
这样做学生比较容易找到数量关系,列出正确版式,同时有克服见“多”就“加”,见“少”就“减”的思维定势。
2对应的思想方法。
对应是人们对两上集合元素之间的联系的一种思想方法。为此在教学中,我充分发挥教材优势,结合教学内容逐步渗透“对应”的数学思想方法。例如《现代小学数学》第一册的“多和少”,课本先出示散乱排列的等量的茶杯和茶杯盖图,接着重新排列整理,使每一个茶杯盖与每一个茶杯对应,直观看到“茶杯与茶杯盖相比,一个对一个,一个也不多,一个也不少”,我们就说茶杯与茶杯盖同样多。使学生初步接触一一对应的思想,初步感知两个集合的各元素之间能一一对应,它们的数量就是“同样多”。
3符号化数学思想方法。
数学的一个突出特点是符号加逻辑。而符号化思想是数学信息的载体,能大大简化运算或推理过程,加快思维的速度,提高学习效率。因此在教学中,要尽量把实际问题用数学符号来表达,还要充分把握每个数学符号所蕴含的丰富内涵和实际意义。例如《现代小学数学》中关于“1”的认识,先让学生从1架飞机、1棵树、1个女孩等具体事物中,概括出数字符号“1”,从具体的量到抽象的数。然后再从抽象的数学符号“1”到具体量,让学生列举表示“1”的具体事物,1把椅、1顶帽子、1件衣服………。
又如,教学“小于和大于”一课,从左右相等的积木的左端拿一个积森到右端。
这时右边的积木块数增多,“=”右边开口张大;左边积木数减少,“=”左边的开口缩小,边说边用左手的食指、中指摆成一个小于号,使学生认识小于号。再用同样的方法认识“大于号”。直观形象地引导学生掌握表示大小关第的符号,从中渗透符号化数学思想方法。
4“化归”的数学思想方法。
化归思想能增长学生智慧与创造能力,是数学中最普遍使用的一种思想方法。即先挖掘内在联系,把问题A转化为熟悉的问题B,再通过问题的解决方法去获得问题A的解。这样做能把问题化难为易、化生为熟、化繁为简、化整为零、化曲为直,可以促使学生提高解决问题的速度。
例如第四册《思维训练》例1,计算一个乒乓球重多少克?
本题直接求解较难。我从数学思想方法的角度去引导学生将奁、右各种球一一对应进行比较:
得出:左右两图的足球、羽毛球的个数相等,乒乓球个数不等,右图的乒乓球个数比左图的多2个,引起右边重了6克,从而把问题化归为“两个乒乓球重6克,一个乒乓球重多少克?”这样一个非常简单的算术问题,学生很容易就解决了。
实践证明,在教学中,如果我们注意从数学思想方法的角度去启发、引导学生思考,就会使学生对新知识不但能快速学会,而且能加深理解、应用,从而提高解决问题的能力,发展学生的思维能力。
小学数学十大数学思想方法如下:
1、对应思想方法
对应是人们对两个集合元素之间的联系的一种思想方法。小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
如一年级上册教材中,分别将小兔和小鹿、小猴和小熊、小兔和小鸟一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。
2、转化思想方法:
这是解决数学问题的重要策略。是由一种形式变换成另一种形式的思想方法。而其本身的大小是不变的。。通过转化达到化难为易、化新为旧、化繁为简、化整为零、化曲为直等。
3、符号化思想方法
符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
4、分类思想方法
分类的思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
5、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
6、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
7、代换思想方法
他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。
8、假设思想方法
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
9、可逆思想方法
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。
10、化归思维方法
化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。
关于“如何加强数学思想方法的渗透”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[顿培灿]投稿,不代表九五号立场,如若转载,请注明出处:https://blog.9www.net/kepu/202601-759.html
评论列表(3条)
我是九五号的签约作者“顿培灿”
本文概览:网上有关“如何加强数学思想方法的渗透”话题很是火热,小编也是针对如何加强数学思想方法的渗透寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...
文章不错《如何加强数学思想方法的渗透》内容很有帮助